Extreme Physics

a.k.a. Science Working Group 5 (compact objects; high density matter; physics of accretion)

Frits Paerels, Feryal Özel, Chris Reynolds, chairs with 35 members signed up

Fundamental Properties of Matter at Supranuclear Density: neutron stars at known distance (Globular Clusters) neutron stars in SNR ('CCO's')

Ultraluminous X-ray Sources and bona-fide SuperEddington Accretion

Microlensing in Multiply-lensed Quasars: Accretion Flow Near the Event Horizon

Accretion onto BH, all scales

Other Great Science with XRS

Observatory Design Requirements

Bright Source Capability (probably unique to this SWG)

Fundamental Properties of Matter at Supranuclear Density

I. Neutron Stars in Globular Clusters

neutron star at known distance; photospheric spectrum: measure T_{eff} , log g: calculate R

differentiate between pure H, pure He composition: collect 10⁶ counts in 10⁵ sec(*); with wide bandpass, down to .2 keV: measure log g (broadband curvature)

(*) standard configuration; µCal

Fundamental Properties of Matter at Supranuclear Density

2. Neutron Stars in Supernova Remnants: 'Central Compact Objects'

same idea as previous; neutron stars of known distance and age; evidence for $Z \ge 6$ surface composition (from a priori constraint on radius)

CCO in Cas A/ Chandra; Ho & Heinke 2009

Ultraluminous X-ray Sources and bona-fide SuperEddington Accretion

Recent discovery of coherent pulsations in some ULX: NS, so M < $2M_{\odot}$ and L > L^{iso}_{Edd}

Understanding ULX population: constrains (S/I)MBH population (formation, growth)

Three goals with XRS:

- study bona-fide superEddington flow (spectroscopy, variability)
- find more NS ULX's (detect pulsations; sources in crowded fields)
- study cosmic evolution of ULX population (byproduct of "first accretion light" surveys)

Angular resolution, effective area

Microlensing in Multiply-lensed Quasars: Accretion Flow Near the Event Horizon

RXJ 1131-1231/Chandra ACIS 28 ksec exp

microlensing variability in Fe K from near event horizon (Krawczynski & Chartas 2016)

Angular resolution, effective area (at ~ 3 keV/ Fe K at z=I)

arguments for R > 5000 grating spectrometer

BH Accretion; 'outflows', winds, ...

Other Great Science with XRS

The power of high resolution imaging: demonstrated by HST, *Chandra*

XRS example: pulsar wind nebulae

Other Great Science with XRS

XMM image quality Chandra image quality

nearby pulsar: Geminga

once $\delta \phi < 0.5$ - l arcsec: qualitative change

Other Great Science with XRS

thermonuclear X-ray bursts from NS: photospheric spectroscopy; M-R relation from multiply redundant diagnostics

if linewidths thermal, $\Delta E/E \sim 2 \cdot 10^{-4}$

 $T_{\rm eff} = 1.5 \ 10^7 \ {\rm K}$ $\log g = 14.6$ Fe/H ~ Solar

Observatory Design Requirements

XRS 'standard' configuration ("20,000 cm² at 1 keV")

topic	exposure (10 ³ sec)	ang. res. (arcsec)
NS in GC	100	< 0.5
NS in SNR	100	< 0.5
ULX	100/104/40	< 0.5
QSO µlensing	30?	< 0.5

ULX:

accretion flow spectroscopy/variability trace population to high z: 10 counts from 10^{40} erg/s at z=5 detect pulsations: 1000 counts in 40 ksec (10^{40} erg/s out to z=0.1)

three practical examples:

I. bright thermonuclear burst from SAX J1808.4-3658

microcalorimeter: 250,000 counts/sec for 10 seconds;

with CAT grating: 18,000 counts/sec for 10 seconds

2. bright steady point source: GRS1915+105

microcalorimeter: 10,000 counts/sec

3. bright extended source: Cas A

1500 counts/sec, full microcalorimeter array

4. and then there is the Crab...

90,000 counts/sec, full microcalorimeter array

Factors for consideration: physical ('pileup') limits in microcalorimeter ($T_{thermal}$); total processing/storage/transmission limits; mitigation strategies for point sources (off-axis, defocus, ..); use of the grating spectrometer